VISUAL AGENT-BASED MODEL DEVELOPMENT
WITH REPAST SIMPHONY

M.J. NORTH; Argonne National Laboratory, Argonne, IL,
and The University of Chicago, Chicago, IL
ERIC TATARA, Argonne National Laboratory, Argonne, IL
N.T. COLLIER, Argonne National Laboratory, Argonne, IL,
and PantaRei Corp., Cambridge, MA
J. OZIK, Argonne National Laboratory, Argonne, IL

ABSTRACT

Repast is a widely used, free, and open-source agent-based modelisgnalation
toolkit. Three Repast platforms are currently availablehesd which has the same core
features but a different environment for these features. R&wagthony (Repast S)
extends the Repast portfolio by offering a new approach to gioldevelopment and
execution. This paper presents a model of physical infrasteuctuetwork
interdependency as an introductory tutorial and illustration hef wisual modeling
capabilities of Repast S.

Keywords: Agent-based modeling and simulation, Repast, toolkits, and development
environments

INTRODUCTION

Repast (ROAD 2005, North, Collier, and Vos 2006) is a widely used, dre open
source agent-based modeling and simulation toolkit with three released platforraly, Repast
for Java, Repast for the Microsoft .NET framework, and RepasPytron Scripting. Repast
Simphony (Repast S) extends the Repast portfolio by offering aapgwoach to simulation
development and execution, including a set of advanced computing techn&dogipplications
such as social simulation. North et al. (2005a and 2005b), Howe 20@&)(and Parker et al.
(2006) provide an overview of the Repast S runtime and development environments.

We use a model of networked physical infrastructure to demongateisual design
capabilities of the Repast S toolkit and as an introductory tutdMhile the example is not
intended to model real phenomena, the model's complexity is high enmulgtstrate how the
user may develop multi-agent models.

It is important to note that Repast S and its related toolstidrender development. This
paper presents the most current information at the time it witerw However, changes may
occur before the planned final release.

Corresponding author addressfichael J. North, Argonne National Laboratory,097South Cass Avenue,
Argonne, IL 60439; email: north@anl.gov.

THE REPAST S MODEL IMPLEMENTATION BUSINESS PROCESS

As discussed in North et al. (2005a and 2005b), the Repast S model intpleonen
business process is as follows:

* The modeler creates model pieces, as needed, in the form obfdaiava
objects (POJOs), often using automated tools or scripting laeguagh as
Groovy.

 The modeler uses declarative configuration settings to passathel pieces
and legacy software connections to the Repast S runtime system.

* The modeler uses the Repast S runtime system to declaraglleRepast S
how to instantiate and connect model components.

* Repast S automatically manages the model pieces based on (L)iveera
user input and (2) declarative or imperative requests from the contpone
themselves.

The POJO model components can represent anything but are enustonly used to
represent the agents in the model. While the POJOs can beddmgatsing any method, this
paper discusses one powerful way to create POJOs for Rephst Bepast S development
environment. However, modelers can use any method—from hand codingping binary
legacy models to connecting into enterprise information systemsre#ite the Repast S POJO
model components.

Regardless of the source of the POJOs, the Repast S runsitem sy used to configure
and execute Repast S models. North et al. (2005b) detail the Repasin® system, the design
of which includes:

» Point-and-click model configuration and operation;
* Integrated two-dimensional, three-dimensional, and other views;
* Automated connections to enterprise data sources; and

* Automated connections to powerful external programs for conducting
statistical analysis and visualizing model results.

SIMPLE PHYSICAL INFRASTRUCTURE NETWORK MODEL

A model of interconnected physical infrastructure networks issegmted as an
introductory tutorial and illustration of the visual modeling cajiddl of Repast S. The model
consists of a natural gas transmission and DC electric poweonke{Tatara et al. 2007b). The
natural gas transmission model consists of a network of interceankcks and nodes, where
the nodes function as delivery, receipt, and/or pipeline termination pandghe links function
as gas pipelines that transport natural gas between nodes. Théed@ enetwork model
considers a balance of demand and generation given the transmissiogyopbk nodes in the

electric network represent generators and load points, whileirtke function as electrical
transmission lines. The two networks are connected via links betlveamatural gas network
and gas-fired electric power plants (generators) in the ielgctretwork. The simple networks
presented here will model propagation of pressure and power alongashand electrical
networks.

VISUAL PROJECT CREATION AND AGENT DESIGN

While previous versions of Repast required the user to set up and cenégu
appropriate integrated development environment (IDE), Repast Sdesoa preconfigured
Eclipse-based IDE such that aopriori programming experience is required to build a model.
Although the Repast IDE is aimed at novice developers, the full R&dsva application
programming interface (API) and advanced IDE configuration optiana\ailable at any time.
Previously, Tatara et al. (2006) discussed using Repast S te @eaodel of wolf-sheep
predation through the Java API.

After the Repast S IDE is started, the user may choose tcngenworking with an
existing project or create a new project. The project creatiawrevprompts the user for the type
of project to create (Figure 1). The user is prompted for basiccpiaj@rmation such as the
project name (Figure 2). Additional project options are availabted advanced user, although
these options may simply be left as the default.

When the Repast project is created in the workspace, a set e€ttpcomponents is
visible in the package explorer, shown on the left side of Figure 3eT¢@mponents include
things such as directories for storing user data and the prajeatescode. Also visible in
Figure 3 is the Score editor, which specifies the hierarclsicatture of the model contexts,
agents, and projections. Model elements are represented grapimcallyee, and components
may be added on a point-and-click basis. Once model elementbéanelaced in the Score
editor, their properties may be edited in the Properties window shown at the bottauref3:i

After the model Score has been completed, the user maygating the agent objects.
At this point, the advanced user may chose to create the agessisalesng the Java API, while
those users not familiar with Java may chose to use the Reesutealitor. The agent creation
wizard is accessed via the package explorer and allows théousezyate a number of Repast
objects (Figure 4). When a new agent is created (Figutbe&s)DE view switches to the agent
editor view as shown in Figure 6.

As discussed in detail in Ozik et al. (2007), the visual agent behaditor,ehe new
project wizard and the new agent wizard are modified formdetahder Greif's free and open
source Flow4J-Eclipse components (Greif 2006) that have been adaptétajyefor agent-
based modeling. Greif (2006) has made the Flow4J-Eclipse systdabkvander a BSD-style
free and open source license. The Repast project team has bBikifa contribution to create
the above-mentioned Repast S components. From the Flow4J home page, Greif (2006) states:

Flow4J is an Eclipse Plug-in for modeling process flows inag énd drop manner. A
process flow can contain process steps (I call them flowletsichwcan be linked
together [in]Jto a complex flow.

Ozik et al. (2007) provides the details on what Repast has both técheand
modified/adapted from Greif’'s (2006) Flow4J-Eclipse system.

Like the Flow4J-Eclipse visual editor, the Repast agent edisetf itonsists of an
editable icon panel and a palette of behavior icons, which may be dragg¢he edit panel and
modified. As discussed in Ozik et al. (2007), the icons are analogous to blocks inteafioivat
may be connected in flexible ways to create the agent behavior logic. Bighosvs the creation
of an agent property “pressure” for the GasNode agent class. @perfyr parameters may be
edited in the bottommost panel in Figure 6. The user is asked to speuifjnber of required
elements such as the property name, data type, and initial valoiés,several optional data,
such as a long description of the property, may also be defined.

Behaviors are defined by creating a behavior element in thkspace as shown in
Figure 7. The behavior element may be either a scheduled bebawpe that is event-driven.
The desired behavior for the nodes in the natural gas network igdiotoechanges in pressure
upstream. Therefore, the behavior at the gas nodes will be event-drtveawsed by changes in
pressure from connected gas nodes.

The behavior block defines how and when the behavior occurs and not whalyactual
happens next. A Task block is used to define the active part ofetmavibr to which it is
associated (Figure 8). The Task block specifies what the alps® when the behavior is
triggered. Continuing with the gas network node behavior, the task shoulst #ug node’s
pressure based on the pressure of the upstream node. Finally, thmlegc is terminated
with an End block as shown in Figure 8.

When the user saves the diagram, the Repast IDE automaticaifyiles the diagram
into usable code that may be immediately loaded into the Repdshe without the user ever
needing to write Java code. The agent behavior editing step ise@paathis example (not
shown) for the electric network nodes, using power rather than peeasuthe propagated
variable.

& New Project |:I@E]

Select a wizard

Create a Repast Project [

Wizards:

|type Filker ket

'@ Java Project

Java Project from Existing &nt Buildfile

2[:*2 Plug-in Project

[== General

= Cvs

[= Eclipse Modeling Framewark

== lava

== Plug-in Development

[== Repast Sirmphorey
Repast Simphony Project

o--&- B--E-E-E

FIGURE 1 New project display wizard with Repast Simphony Project selected

£ New - B)&
Repast Simphony Project
Create a new Repask Simphoney Project

Froject name:! | demal |

Ilse defaulk location

| Browse, ..

@ | <Back || mext> | Erish

FIGURE 2 Repast Simphony Project new project basic options

FIGURE 3 Repast Simphony project workspace showing Score editor view

FIGURE 4 New agent creation wizard

FIGURE 5 New agent creation wizard name option

10

FIGURE 6 Repast agent editor showing creation of an agent property

11

FIGURE 7 Repast agent editor showing creation of an agent behavior

12

FIGURE 8 Repast agent editor showing creation of an agent task and its linkage with
behavior

13

RUNTIME AGENT CREATION AND DISPLAY DESIGN

After the agents have been created in the Repast agent editemtiheermay be started
from the Repast IDE. Creation of user-specified data collectiotput, and display may be
performed through wizards in the Repast S runtime. The runtiméowi contains a scenario
tree with contexts that branch from the main model context. Thremg access each of the
underlying wizards by selecting any component in the tree. Abnevae would create the
components in the order of dependency: displays first, followed lay a@dlection and data
output components. The runtime graphical user interface (GUI) elerawne been discussed in
detail by Tatara et al. (2007a), and only the visualization elements will hessksthere.

Displays for two and three-dimensional spatial projections aatexn by selecting the
Displays branch in the scenario tree. The user must speciastt dne spatial projection and
optionally one or more network projections or value layers. This dem® aisg@ngle two-
dimensional (2D) grid projection on which the physical network elemerdsplaced. The
appearance of the agents is fully customizable and may be sgddxyfthe Agent Style wizard in
a display item as shown in Figure 9.

The network style editor (Figure 10) allows the user to spéaty the network links are
visualized, including the line style, color, and width. Additionally, lthe width and color may
be optionally specified by the agent properties. For example, a higbdpeenode may be dark
blue in color and a low-pressure node may be light blue.

Additionally, the agent style may be defined by the agerg siyitor shown in Figure 11.
The agent style editor provides options in addition to color and size, such as 2D shapetdabel
and label font properties. The agent icon size may also bedsaatording to a user-selected
agent property. Options for 3D styles include the ability to seBbhshape, wrap texture maps
around the 3D shape, and load third-party 3D model files.

At this point, although the agent display styles have been created, no agent irestestices
yet in the runtime, and thus there is nothing to visualize. Thehaseseveral options in creating
agent instances, including loading from delimited or databasedildsy using the runtime
Repast agent editor shown in Figure 12. The Repast agent editor prthadiexibility and
power to create agents and arrange agents in the projections dsfitteel model. Agents may
be created, cloned, and deleted, and agents in the projection may be feegjgdin space. The
agent editor uses the styles defined for the display so tlcht agent type may be easily
distinguished from one another.

If the model contains network projection, as with this demo, the adeot enay be used
to connect the agents in the network by dragging connections betwesis éggure 13).
Multiple network types are supported, and the network being editeelasted from a drop-
down box. The network connections are styled on the basis of the spstyfesdfor the display.
In the case where a 3D display is to be edited, the agent exdtitavill re-project the 3D display
onto multiple 2D displays for editing. Figure 14 shows the connecteasinicture networks in
2D and 3D projections in the Repast runtime display.

14

FIGURE 9 Runtime display creation wizard

FIGURE 10 Network display style editor tool

15

FIGURE 11 Agent display style editor tool

FIGURE 12 Runtime agent instance editor

16

17

FIGURE 13 Runtime agent instance editor with network links

18

FIGURE 14 Runtime displays showing 2D and 3D visualization of networks

19

CONCLUSIONS

The Repast S runtime is a pure Java extension of the exispasRportfolio. Repast S
extends the Repast portfolio by offering a new approach twlaiion development and
execution. The Repast S development environment is expected to includeexbfeatures for
agent behavioral specification and dynamic model self-assembiyphkin old Java object can
be a Repast S model component. This paper presents an introductogy andrillustration of
the visual modeling capabilities of Repast S by using a simptel of interconnected physical
infrastructure networks.

ACKNOWLEDGMENT

The authors wish to thank David L. Sallach for his visionary lehgem founding the
Repast project and Charles M. Macal for his sustaining involvemetite project. Also, the
authors wish to thank Alexander Greif for contributing Flow4J-Eeligs the software
development community. This work is supported by the U.S. Departmémenfy, Office of
Science, under contract number DE-AC02-06CH11357.

REFERENCES
Greif, A., 2006 Flow4J-Eclipse Home Pagavailable at http://flow4jeclipse.sourceforge.net/.

Howe, T.R., N.T. Collier, M.J. North, M.T. Parker, and J.R. Vos, 2006, “ContniAgents:
Contexts, Projections, and Agents” in D. Sallach, C.M. Macal, and M.Xh Neds.),
Proceedings of the Agent 2006 Conference on Social Agents: Results and tBrospec
ANL/DIS-06-7, co-sponsored by Argonne National Laboratory and The Utityeof
Chicago, September 21-23.

North, M.J., T.R. Howe, N.T. Collier, and J.R. Vos, 2005a, “The Repast Simjrexgfopment
Environment,” in C.M. Macal, M.J. North, and D. Sallach (ed&.¢ceedings of the Agent
2005 Conference on Generative Social Processes, Models, and Mechanisms
ANL/DIS-06-1, co-sponsored by Argonne National Laboratory and The Uhiyeof
Chicago, Oct. 13-15.

North, M.J., T.R. Howe, N.T. Collier, and J.R. Vos, 2005b, “Repast Simphony nRaunti
System,” in C.M. Macal, M.J. North, and D. Sallach (ed¥.¢ceedings of the Agent 2005
Conference on Generative Social Processes, Models, and Mechahl$hiB1S-06-1, co-
sponsored by Argonne National Laboratory and The University of Chicago, 646.13

North, M.J., N.T. Collier, and J.R. Vos, 2006, “Experiences Creating Thrglerimentations of
the Repast Agent Modeling ToolkitACM Transactions on Modeling and Computer
Simulation16(1):125, ACM (January): New York, NY.

Ozik, J., M.J. North, D.L. Sallach, and J.W. Panici, 2007, “ROAD Mapndforming and
Extending Repast with GroovyProceedings of the Agent 2007 Conference on Complex

20

Interaction and Social Emergenceo-sponsored by Argonne National Laboratory and
Northwestern University, Nov. 15-17.

Parker, M.T., T.R. Howe, M.J. North, N.T. Collier, and J.R. Vos, 2006, “AgestdBMeta-
Models,” in D. Sallach, C.M. Macal, and M.J. North (edBrjceedings of the Agent 2006
Conference on Social Agents: Results and Prospédit/DIS-06-7, co-sponsored by
Argonne National Laboratory and The University of Chicago, September 21-23.

ROAD (Repast Organization for Architecture and Design), 28@past Home Pag€hicago,
IL; available at http://repast.sourceforge.net.

Tatara, E., M.J. North, T.R. Howe, N.T. Collier, and J.R. Vos, 2006, “An Inttmauto Repast
Simphony Modeling Using A Simple Predator-Prey Example,” in Dla8a C.M. Macal,
and M.J. North (eds.Rroceedings of the Agent 2006 Conference on Social Agents: Results
and ProspectsANL/DIS-06-7, co-sponsored by Argonne National Laboratory and The
University of Chicago, September 21-23.

Tatara, E., M.J. North, T.R. Howe, N.T. Collier, and M.T. Parker, 2007a, diBgilModels in
Repast Simphony: A Predator-Prey Exampl@foceedings of the North American
Association for Computational Social and Organizational Sciences 2007 Conference
June 7-9, 2007, Emory University, Atlanta, Georgia.

Tatara, E., M.J. North, J. Dolph, J. Kavicky, and E. Portante, 2007b, “The Siynphiegrated
Simulation Framework for Infrastructure Interdependency ModeliiChE Annual
Meeting Salt Lake City, UT, November 4-9, 2007.

